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This paper presents an automatic classification method dedicated to mysticete calls. This method

relies on sparse representations which assume that mysticete calls lie in a linear subspace described

by a dictionary-based representation. The classifier accounts for noise by refusing to assign the

observed signal to a given class if it is not included into the linear subspace spanned by the dictio-

naries of mysticete calls. Rejection of noise is achieved without feature learning. In addition, the

proposed method is modular in that, call classes can be appended to or removed from the classifier

without requiring retraining. The classifier is easy to design since it relies on a few parameters.

Experiments on five types of mysticete calls are presented. It includes Antarctic blue whale Z-calls,

two types of “Madagascar” pygmy blue whale calls, fin whale 20 Hz calls and North-Pacific blue

whale D-calls. On this dataset, containing 2185 calls and 15 000 noise samples, an average recall of

96.4% is obtained and 93.3% of the noise data (persistent and transient) are correctly rejected by

the classifier. VC 2018 Acoustical Society of America. https://doi.org/10.1121/1.5055209

[AMT] Pages: 1550–1563

I. INTRODUCTION

Passive acoustic monitoring (PAM) is a very useful tool

for helping scientists study marine mammals,1 detect their

presence during seismic surveys and as a consequence, miti-

gate the impact of man-made acoustic activities.2,3 The suc-

cess of PAM has led to an increasing deployment of

underwater acoustic recorders across many oceans.4 As a

result, the development of efficient and robust automatic

methods is needed to analyze the growing amount of acous-

tic data generated by these recording systems. Such methods

are helpful for human analysts to detect, classify, locate,

track or count marine mammals.

PAM is particularly relevant for mysticetes or baleen

whales which are known to produce a wide variety of under-

water sounds.5–7 Their repertoire is composed of tonal,8,9

frequency-modulated (FM),10 pulsive11,12 sounds and other

calls with exotic names such as boings,13 moans, and

grunts,14 exhalation and gunshot,15 and “star-wars” vocaliza-

tion.16 Mysticete calls exhibit different levels of variability.

Some calls, such as Antarctic blue whale Z-calls,17 only

show slight inter-annual and seasonal variations,8 whereas

other vocalizations, such as songs produced by bowhead

whales,3,18 fully change from one year to another.19 In

between, there are a variety of calls with the same signal

structure but with parameters, such as duration and/or band-

width and/or FM rate, whose values may change over time.7

Automatic classifiers of mysticete calls face several

challenges. As any pattern recognition algorithms, they have

to identify the salient features of the calls of interest.

However, this may be difficult because (i) signal-to-noise

ratios can be low, (ii) propagation effects can distort the call

features,20 and (iii) the selected features must not only

describe and discriminate the calls of interest, but also21

“provide contrast to any other type of signal that is likely to
occur” in the same acoustic context. Past experiments have

shown that acoustic recordings can contain a wide variety of

interfering transient sounds in the frequency range of mysti-

cete calls.22–26 Therefore, providing classifiers with a rejec-

tion option that refuses to assign a signal of no interest to

any class is of prime importance for PAM applications.

In the context of multiclass classification, most auto-

mated techniques for mysticete calls implement a two-step

procedure. They usually operate in the frequency or cepstral

domain and first extract sound attributes like start frequency,

end frequency, frequency slope, duration, etc. A supervised

learning algorithm then maps these attributes to a call class

after learning training examples labeled by human analysts.

Classifier of this kind include aural classification,27 neural

networks,3 hidden Markov models,28 quadratic discriminant

function analysis,29 Gaussian mixture models30 or classifica-

tion trees.31 More recently, Halkias et al.25 proposed an

alternative approach based on hybrid generative/discrimina-

tive models commonly used in machine learning. This

method involves injecting a spectrogram image of the sound

to process into a multiple-layer neural network. The main

advantage of the used network is that it automatically learns

the signal attributes from unlabeled data and does not rely on

“hand-engineered” features.

Although applied with success in specific contexts, state-

of-the-art methods may however show some limitations.

For instance, some classifiers lack of general applicability

because they are tuned for specific species. This is the case of

spectrogram correlation,32 non-spectrogram correlation,13a)Electronic mail: thomas.guilment@imt-atlantique.fr
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vector quantization algorithm and dynamic time warping.33

Others may require to tune many (hyper)-parameters.25,29 In

case these parameters are not easy to physically interpret, their

numerical values may be difficult to set, which can limit the

robustness of the classifier or lead to under- or over-fitting.

Moreover, some methods offer a rejection option that rely on

parametric models of noise24 or require the classifier to learn

the features of the unwanted signals.25 Exhaustive noise learn-

ing or modeling is hardly feasible in practice since the under-

water acoustic environment is very complex and contains many

transient signals with very different features. In addition, these

features may fluctuate in time and space so that they may

greatly vary from one dataset to another. Finally, most existing

classifiers lack of modularity/flexibility and are often designed

for a specific set of calls, so that adding or removing a call class

usually requires to “retrain” the entire classifier. In a PAM con-

text, where the same classifier may be used on platforms oper-

ating at different geographic locations and at different time of

the year, offering the capability of selecting online the class of

calls taken into account by the classifier may have an opera-

tional interest. Classes corresponding to species whose habitats

are known to be far away from the sensor may therefore be

removed from the classifier, thus reducing the probability of

miss-classification.

In this paper, a general method capable of classifying

multiple mysticete calls is described. The method has been

designed to meet the following requirements: (i) a rejection

option is implemented, (ii) the classifier is modular, (iii) it is

tuned by a very few (easy-to-set) parameters, and (iv) it

involves a compression option so as to provide a good trade-

off between robustness to call variability and computational

load. The proposed approach relies on the sparse framework

recently developed in signal processing and machine learn-

ing.34–36 Sparse representations express a given signal as a

linear combination of base elements in which many of the

coefficients are zero. Such representations can capture the

possible variability observed for some vocalizations and can

automatically be learned from the time-series of the digitized

acoustic signals, without requiring prior transforms such as

spectrograms, wavelets or cepstrums. This framework is

general and applicable to any mysticete call lying in a linear

subspace described by a dictionary-based representation.

Successfully applied to the detection of mysticete calls,23

this framework is thus extended to the classification of mys-

ticete calls and evaluated in this context. To the authors’ best

knowledge, this paper is a first attempt in this direction.

The paper is organized as follows. In Sec. II, the classifi-

cation method is presented. The performance of the classifier

is then evaluated on five call classes extracted from four real

datasets in Sec. III. Finally, conclusions are given in Sec. IV.

Notation: Throughout this paper, Rn designates the space

of all n-dimensional real column vectors and Rn�m is the set

of all real matrices with n rows and m columns. The super-

script T means transposition. k � kp designates the ‘p norm.

II. METHODOLOGY

Supervised learning makes it possible for systems to

perform automatic classification of previously unseen inputs,

after learning examples labeled by experts. The learning

phase proceeds as follows. A labeled or training dataset is

made of N pairs fðsi; ‘iÞg1�i�N representative of C classes,

i.e., C call types in our case, where si is the ith feature vector

in the training set and ‘i is the corresponding class or label of

si, e.g., ‘5 ¼ 3 means that the fifth element of the training set
belongs to the third class. This training set is used to deter-

mine a map f ð�jfðsi; ‘iÞg1�i�NÞ that infers a label from a

given feature vector.

The map f is either learned on the training set by mini-

mizing a loss function representing the cost paid for inaccu-

racy of predictions (i.e., discrepancy between the predicted

and the actual label) or derived from a prior choice of a simi-
larity measure that compares new test data to training exam-

ples. Neural network-based classifiers typically implement

the first approach, whereas methods such as banks of

matched-filters37 or spectrogram correlators32,38 implement

the second one.

As discussed below, our method relies on the second

approach. This choice is mainly motivated by the will to

build a robust and modular method where the similarity mea-

sure does not depend on the training set or on the number of

call classes. It is also desirable to avoid using too many

(“no-so-easy-to-tune”) hyperparameters so as to ease the

deployment of the method.

In the sequel, fsk : k > Ng stands for the test feature

vectors that the system must classify. Given such a test fea-

ture vector sk with k>N, ‘^k ¼ f ðskjfðsi; ‘iÞg1�i�NÞ is the out-

put label in {1, 2,…, C} assigned to sk.

In the method proposed below, feature vectors are digi-

tized time-series of calls. It is assumed that detection of

regions of interest within the time-series has already been

achieved either automatically or manually. In Secs. II A and

II B, the sparse representation and classification framework

for calls is presented. Sections II C and II D introduce the

compression and the rejection options. In Sec. II E, an over-

all description of the procedure is given.

A. From standard similarity measures to sparse
representation

There exists a wide variety of similarity measures, e.g.,

Euclidean distance, absolute value, likelihood, correlation,

etc. For instance, let jhsk; siij be the non-negative normalized

scalar product or correlation between a signal sk and a signal

si. For approaches such as banks of matched filters or spec-

trogram correlators, the map f chooses the class that maxi-

mizes the correlation between a test signal sk, k>N, and all

the signals in the training dataset, i.e.,

‘^k ¼ ‘i� ; (1)

where i� ¼ argmaxi2f0;1…;N�1gjhsk; siij.
A well-known extension of such an approach is the K

nearest neighbors algorithm (KNN)39 where sk is assigned to

the most common class among its K nearest neighbors (e.g.,

the K signals in the training dataset having the highest corre-

lation with sk). In general, choosing K greater than one is

beneficial as it reduces the overall noise.40
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Beyond KNN, the classification can be based on a simi-

larity measure between the test signal sk to be labeled and a

linear combination of the K signals closest to sk. All training

signals then become elementary atoms which can be com-

bined to create new signals. In this way, the new representa-

tion space makes it possible to cover a larger space than the

original training dataset and, as such, is expected to better

capture the intrinsic/proper structure of the signals of inter-

est. On the one hand, K should be small enough to prevent

overfitting, especially in presence of noise. On the other

hand, given a test signal, the similarity measure must help

select a linear combination of atoms from the same class as

the signal to guarantee a meaningful comparison between

this one and each average model of each class. Therefore,

the choice of K results from a trade-off between the risk of

overfitting and the necessity to approximate sufficiently well

the test signal.

Formally, it is assumed that any test signal sk with

dimension n from class c approximately lies in the linear

span of the training signals associated with this class, i.e.,

sk � Acwc; with kwck0 � K � Nc; (2)

where Ac 2 Rn�Nc is a matrix containing all the Nc training

signals of length n belonging to the class c, wc 2 RNc is a

vector of weights used in the linear combination and kwck0

denotes the ‘0-pseudonorm that returns the number of non-

zero coefficients in wc. When sk can be represented by a

small number of non-zero coefficients in the basis Ac, model

(2) is referred to as “sparse representation” in the signal

processing literature.35 The inequality kwck0 � K is called

the sparsity constraint. This constraint K is directly related to

the “complexity” of each single call to be classified. Signals

combining variability and high complexity (such as erratic

signals) must be constructed from a large number of atoms

while signals of low complexity should be composed of a

few atoms. For instance, D calls of blue whales41 are FM

sweep that could well be approximated by a linear combina-

tion of a few atoms. However, such calls exhibit variability

in initial frequency, FM rate, duration, and bandwidth.

Therefore, the ‘0 norm of wc is small for each single call but

the active atoms, corresponding to non-zero entries of wc,

can be different from one call to another so that Nc must be

large. Note that model (2) is an approximation as calls may

be affected by local propagation conditions and noise.

However, the very good results obtained in Sec. III indicate

that it is sufficiently accurate for classification purposes.

Examples of test signal reconstruction with training signals

are shown in the appendix for real calls.

B. Sparse representation-based classification

Based on a linear model similar to Eq. (2), Wright et al.
proposed a sparse representation-based classifier (SRC) in

Ref. 34. It achieved impressive results in a wide range of

applications such as bird classification,42 EEG signal classifi-

cation,43 and face recognition.34,44 Originally applied to face

recognition, we suggest adapting this approach to our con-

text. To this end, this section recalls the SRC procedure,

whereas Secs. II C and II D propose additional features to

improve SRC performance in our particular application.

SRC assumes that test signals can be represented by a lin-

ear combination of training signals. In our context, these signals

are digitized time-series and represent the input feature vectors

of the classifier. SRC is a two-step procedure: (i) it seeks the

linear combination of training signals that best approximates—

in the sparse sense—the test signal and (ii) chooses the class

that mostly contributes to this approximation. More precisely,

the true label of the test signal sk being unknown, sk is first rep-

resented as a linear combination of all training signals stored in

a matrix A ¼ ½A1;A2;…;AC	 2 R
n�
PC

c¼1
Nc , where C is the

number of call classes, i.e.,

sk � Aw; with kwk0 � K: (3)

Ideally, the entries of w 2 R
PC

c¼1
Nc are all zeros except at most

K entries related to the training signals from the same class as

the test signal. For instance, if sk belongs to class c, i.e., ‘k¼ c,

then w should ideally satisfy w ¼ ½0;…; 0;wT
c ; 0;…; 0	T where

wc 2 RNc and kwck0 � K. Therefore, the actual class of the

test signal could be obtained by estimating w and finding the

indexes of the nonzero entries of w. However, in practice,

because of the noise and the non-orthogonality between training

signals from different classes, nonzero entries of w may appear

at indexes not related to the true class of the test signal.

Consequently, the class label for the test signal is not determined

by finding the indexes of the nonzero entries of w but by finding

the class-specific entries of w yielding the best approximation of

sk in Eq. (3).

More specifically, the two-step procedure of SRC is as

follows:

(1) Estimate w by sparsely encoding sk over the basis A, i.e.,

by solving

w� ¼ argmin
w
ksk � Awk2

2; with kwk0 � K: (4)

Sparse encoding can be performed with pursuit algo-

rithms35 or ‘1-norm minimization.45 In Sec. III, this step is

implemented with orthogonal matching pursuit (OMP).46

(2) Associate sk to the class ‘^k that satisfies

‘^k ¼ argmin
1�c�C

ksk � Adcðw�Þk2
2; (5)

where dcðw�Þ is a characteristic function that selects the

coefficients of w� associated with the cth class. For any

w 2 R
PC

c¼1
Nc ; dcðwÞ 2 R

PC

c¼1
Nc is a vector whose non-

zero entries are the entries in w that are related to the cth

class. For instance, if w ¼ ½wT
1 ;w

T
2 ;…;wT

C	
T

where each

wi belongs to class i, then dcðwÞ ¼ ½0;…; 0;wT
c ;

0;…; 0	T . The solution to Eq. (5) is found by exhaustive

search through all the classes.

C. Compression option

Ideally, the training dataset A should span the space that

includes any mysticete call we wish to classify. In particular,
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for each class, Ac should incorporate enough variability to

model all possible calls of the same class. It is thus desirable to

inject in A the maximum amount of information we have on

these calls. However, the computational complexity of Eq. (4)

grows with the size of A without necessarily adding any perfor-

mance improvement if A contains redundant signals. To limit

redundancy in A and thus achieve a trade-off between variabil-

ity and computational load, we suggest building a lower dimen-

sional dictionary D ¼ ½D1;D2;…;DC	 from the training

dataset, where each submatrix Dc has N0c � Nc columns, i.e.,

Dc 2 Rn�N0c . Each Dc is found as the subdictionary that leads

to the best possible representation for each training signal of

class c with the sparsity constraint Eq. (4). More precisely, the

new subdictionary Dc for class c is derived by solving the mini-

mization problem:

min
Dc;W
kAc � DcWk2

F

subject to kwik0 � K; 8 1 � i � Nc; (6)

where W ¼ ½w1;…;wNc
	 and wi 2 RN0c . The minimization

problem (6) is commonly referred to as “dictionary learning”

and is only performed offline once. Numerical solutions to

Eq. (6) can be obtained with the method of optimized direc-

tion (MOD),47 K-SVD,48 or online learning.45 Once the

lower dimensional dictionary is learned, A and Ac are

replaced by D and Dc in Eqs. (4) and (5), respectively, and

dc(�) is adapted to the size of D. In addition to removing the

redundant information in the learning process, dictionary

learning extracts the salient feature of A and this thus

expected to limit the sensitivity to noisy training signals or

to overfitting issues.

D. Rejection option

A major challenge in automatic classification of under-

water sounds is the management of “noise.” In our context,

noise is defined as any test signal, fed into the classifier that

does not belong to one of the C output mysticete call classes

of the classifier. This noise can be:

• Transient noise or interference that designates any tran-

sient signal of no interest for the classifier, e.g., calls of

other whales, ship noise, airguns, earthquakes, ice tremors,

etc.
• Background noise which is a mixture of numerous uniden-

tifiable ambient sound sources that does not include any

transient signal.

The rejection option offers the capability of refusing to

assign the examined signal to any class, possibly prompting

for a deeper investigation by a human analyst. In Ref. 34,

Sec. 2.4, a rejection option is proposed for SRC. It relies on

the assumption that a valid test signal has a sparse represen-

tation whose nonzero entries concentrate mostly on one

class, whereas a signal to be rejected has coefficients spread

widely among multiple classes. While such an assumption

may be valid in applications such as face recognition,34 it is

not applicable in our context. The main reason is that tran-

sient underwater acoustic noises may have a non-negligible

amount of their energy lying in a subspace in which a spe-

cific class of calls resides. For instance, the sparse coeffi-

cients of impulsive noise are likely to concentrate on classes

related to impulsive calls (such as the fin whale 20 Hz calls

presented in Sec. III A), whereas tonal noise coefficients will

be related to tonal calls having similar frequencies. To deal

with noise, we propose to apply a post-processing procedure

that decides whether the test signal actually lies in the sub-

space spanned by the column of the subdictionary corre-

sponding to the class chosen by SRC. More precisely, the

result of SRC is validated if the estimated signal-to-interfer-

ence-plus-noise ratio (SINR)

SINR sk; ‘
^
k

� �
¼

jjDd‘^k w�ð Þjj22
jjsk � Dd‘^k w�ð Þjj22

(7)

is greater than some threshold. Based on model (2),

Dd‘^kðw
�Þ is an estimate of the signal of interest and sk

�Dd‘^kðw
�Þ is an estimate of the interference plus back-

ground noise. This criterion measures the reconstruction

quality of the test signal sk when approximated by a linear

combination of the elements of D‘^k
. It is inspired by constant

false alarm rate (CFAR) detectors of known signal in noise

with unknown power, which show optimal properties with

respect to detection performance.22,23,49 The methodology

used to set the SINR threshold is presented in Sec. III C 2. A

key aspect of our approach is that the classifier does not

need to learn features of transient noises to reject them. This

differs from methods such as Ref. 25 where noise features

are learned by neural networks or from Ref. 24 where, for

each class of noise, “a parametric model of noise is intro-
duced. The models are based on the spectral properties of
typical kinds of impulsive noise observed in the data” (Ref.

24, pp. 360). This implies to find exhaustive examples of

underwater noise, which seems difficult given the complex-

ity of the underwater environment. The characteristics of

sensed underwater sounds are highly dependent on the

anthropogenic, biological, geological, or oceanographic

environment as well as on the way sensors are mounted in

the water column. So the noise learned or modeled in one

context can hardly be transposed to another one.

E. Overall procedure

The classification process resulting from the foregoing

considerations is hereafter referred to as SINR-SRC. It is sum-

marized as follows and illustrated with two classes in Fig. 1:

(1) Offline selection of training signals representative of

their call class;

(2) offline application of the compression option (6) if

required;

(3) given some test signal sk, perform a sparse encoding of

sk over dictionary D by computing:

w� ¼ argmin
w
ksk � Dwk2

2; with kwk0 � K:

(4) Application of SRC by computing the class contributing

most to the test signal sk:
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‘^k ¼ argmin
1�c�C

ksk � Dcdcðw�Þk2
2:

(5) Application of the rejection option: if SINRðsk; ‘
^
kÞ is

greater than some threshold, the result provided by SRC

is validated, otherwise sk is considered as noise.

This SINR-SRC procedure can be illustrated by the

scheme shown in Fig. 1.

In addition to the good classification performance

achieved by SINR-SRC (see Sec. III), note also that it is

modular, which can be very useful in an operational context.

For instance, if a new class of mysticete calls must be added

to an existing SINR-SRC classifier, there is no need to

“retrain” the entire classifier as required in approaches such

as neural networks, random forest or support vector machine.

Only the new subdictionary associated to the new class must

be learned. Moreover, to reduce miss-classifications of

online passive acoustic monitoring, prior information such

as the geographical position of the sensor could be taken into

account by removing the subdictionaries in D corresponding

to species whose habitats are known to be far away from the

sensor.

III. EXPERIMENTAL RESULTS

A. Call library

SINR-SRC is evaluated for five call types: Antarctic

blue whale Z-calls,50,51 two types of Madagascar pygmy

blue whale calls,50 fin whale 20 Hz calls,52 North-Pacific

blue whale D-calls.26,41 These calls have been chosen

because:

• They all overlap in frequencies and some of them have

similar durations so they cannot be discriminated based on

these two elementary features (Figs. 2 and 3).

• They offer some variety in terms of signal types: pulsive,

tonal sounds, or frequency-modulated (FM) sweeps

(Fig. 4).
• They exhibit different levels of variability: from almost

stereotyped (e.g., Z-calls) to variable in duration, band-

width and FM rate (e.g., D-calls).

The five call types were manually extracted from three

datasets.

1. The DEFLOHYDRO dataset

Three autonomous hydrophones were deployed near the

French territories in the Southern Indian Ocean from

October 2006 to January and April 2008. The objective of

the project was to monitor low-frequency acoustic signals,

including those produced by large whales.53 The three

instruments were widely spaced and located in the

Madagascar Basin, about 320 nautical miles (nm) south of

La Reunion Island, and 470 nm to the northeast (NEAMS)

and 350 nm to the southwest (SWAMS) of Amsterdam

Island. The mooring lines were anchored on the seafloor

between 3410 and 5220 m depths and the hydrophones were

deployed near the sound channel axis (SOFAR) between

1000 and 1300 m. The instruments recorded sounds continu-

ously at a sampling rate of 250 Hz (frequency range

0.1�110 Hz).50 Two hundred fifty four Z-calls and 1000 fin

whale 20 Hz calls were manually extracted from this dataset.

2. The OHASISBIO dataset

In continuation to the DEFLOHYDRO experiment, a

network of hydrophones was initially deployed in December

2009 at five sites in the Southern Indian Ocean. This experi-

ment was designed to monitor low-frequency sounds,

FIG. 1. (Color online) Overview of the classification method for two

classes.

FIG. 2. (Color online) Frequency range of each call type.

FIG. 3. (Color online) Boxplot of durations for each call type.
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produced by seismic and volcanic events, and by large

baleen whales.17,54 Five hundred fifty one Madagascar

pygmy blue whale calls were manually extracted from the

data recorded by La Reunion Island hydrophone in the

Madagascar Basin (geographic coordinates: þ26 
 050 S,

þ058
 080 E) in May 2015. 264 were type-1 calls and 287

were type-2, see Fig. 4.

3. The DCLDE 2015 dataset

These data have been obtained with high-frequency

acoustic recording packages deployed in the Southern

California Bight. 380 D-calls were extracted from data

recorded at the CINMS B site (latitude: þ34
 170 N, longi-

tude: þ120
 010 700 W) in summer 2012.26

The whole library is composed of 2185 mysticete calls.

Each call has been manually annotated in time and fre-

quency: start and end time are identified as well as lowest

and highest frequency of each call. All calls are band-pass

filtered according to their annotation and resampled at

250 Hz. To apply SRC, all calls must have the same number

of time samples, which is easily achieved by zero-padding.

As shown in Fig. 5, the library contains signals with a large

variety of signal-to-noise ratios (SNR). The SNR is here

defined as the ratio of signal power to noise power, measured
in the frequency band of each individual call.

Note that four types of calls (Z-calls, 20-Hz pulses,

Mad1, Mad2) were recorded in the Indian ocean and one

type (D-calls) in the Southern California Bight. Sensors of

the OHASISBIO or DEFLOHYDRO networks can sense the

first four types of calls in the same recordings55 but North-

Pacific blue whales D-calls are observed separately. In prac-

tice, this type of D-calls can therefore be differentiated from

the other calls based on the assumed habitats. To challenge

our method, location information was not taken into account.

A similar approach was considered in Ref. 25. In addition,

blue whales in the Indian Ocean also produce D-calls.56

Although slightly different from D-calls of North-Pacific

blue whales, these D-calls are also FM-like signals with vari-

able initial frequency, FM rate, duration, and bandwidth.

This suggests that our method could be relevant for these

calls as well.

B. Noise library

To test the robustness of SINR-SRC against noise, a

noise library was also created. 5000 noise samples were

FIG. 4. (Color online) Examples of spectrograms from the call library. (a) Four Z-calls produced by Antarctic blue whales, (b) two types of alternative calls

produced by Madagascar pygmy blue whales, (c) 20 Hz pulse train produced by fin whales, (d) five D-calls produced by North-Pacific blue whales.

FIG. 5. (Color online) Distributions of the SNRs (in dB) of all the vocaliza-

tions in the dataset.
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extracted from the DEFLOHYDRO dataset, 5000 from the

DCLDE 2015 dataset, and 5000 more from a dataset, pro-

vided by Sercel,57 recorded during seismic surveys. The first

5000 noise samples mainly correspond to what is called

“background noise” in Sec. II D and the others are mostly

transient signals of no interest for the classifier, i.e.,

“interference” (see Fig. 6). In practice, the features (duration,

bandwidth, power, etc.) of the noise samples injected into

the classifier depend on the actual behavior of the detector

used to identify the region of interest before classification.

Since we would like to test the performance of our classifier

irrespective of the detector, the noise samples were randomly

extracted from the datasets. In addition, to challenge the

method, noise samples were filtered so that their bandwidths

and durations were chosen identical to bandwidths and dura-

tions of mysticete calls to be classified. This corresponds to

a worst-case scenario for the classifier as filtered noise sam-

ples will have a greater amount of energy in the subspaces in

which calls reside, leading to an increase of SINR Eq. (7).

C. Performance

The performance of SINR-SRC is first analyzed and com-

pared with an implementation of a state-of-the-art method,29 in

the absence of a rejection option. Results with the rejection

option activated are then presented. The impact of the dictionary

size as well as the sparsity constraint is discussed at the end of

this section. The performance of the classifier is measured using

cross-validation. As shown in Table I, for each class (with the

exception of noise), 100 calls are randomly selected for training

and the remaining calls in this class are used for testing. All the

tests presented are averaged over 100 random selections of the

training set to ensure that the results and conclusions do not

depend on any specific choice of the training data. For each

class, the recall metric, used below, is defined as the ratio

between calls correctly classified and the total number of call in

this class. This metric is sometimes referred to as sensitivity or

true positive rate. A recall of 100% for Z-calls class means that

all Z-calls have been correctly classified.

1. Results without rejection

Table II shows the average confusion matrix of the SRC

algorithm without rejection and without injecting noise in the

classifier. Each column of the matrix represents the percentage

of calls in a predicted class while each row represents the per-

centage of calls in an actual class. The standard deviation of the

classification results is also displayed in Table II. For this test,

no reduction of the dictionary dimension is applied, i.e., D ¼ A
and the sparsity constraint K is set to 3 (impact of these parame-

ters on the classification performance is discussed in Sec.

III C 2). An overall average recall of 99% is obtained. The SRC

classifier not only makes very few errors but is also robust to

training dataset changes.

For comparison, Table III displays the classification

results obtained with an implementation of the time-

FIG. 6. (Color online) Examples of spectrograms from the noise library. (a) Extracted from DCLDE 2015, (b) seismic survey noise provided by Sercel

(Ref. 57) and (c) oceanic noise extracted from DEFLOHYDRO.

TABLE I. Number of training and test signals used for each class and for

each iteration of the cross-validation.

Class Training sig. Test sig. Total

Z-call 100 154 254

Mad1 100 164 264

Mad2 100 187 287

20-Hz pulse 100 900 1000

D-call 100 280 380

Noise – 15000 15000
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frequency based method introduced in Ref. 29. Similarly to

SINR-SRC, this method is modular and is endowed with a

rejection option that requires no noise training. It relies on

the extraction of four amplitude-weighted time-frequency

attributes: the average frequency, the frequency variation,

the time variation, and the slope of the pitch track in time-

frequency space. In our implementation inspired by Ref. 29,

this extraction is performed on several spectrograms, each

spectrogram being tuned to the time-frequency features of a

specific class. The attributes extracted from each spectro-

gram are aggregated and then used as inputs of a quadratic

discriminant function analysis classifier. This method yields

slightly worse performance than SINR-SRC (without rejec-

tion option). Its average recall is 92.36% compared to

99.46% for SINR-SRC. Note also that SINR-SRC provides

much smaller standard deviations. The method inspired by

Ref. 29 learns an average model for each call class and is

therefore strongly dependent on the quality of the training

calls. When the training database contains no “outliers,” the

resulting model is accurate and leads to good classification

results. However, in presence of a few calls with poor qual-

ity, the model is affected and the performance of such a

method decreases. In contrast, the dictionary of SINR-SRC

involves sufficiently many atoms so that the reconstruction

of the test signal is always good enough to yield good classi-

fication performance.

2. Results with the rejection option activated

We now illustrate the performance of SINR-SRC when

the rejection option is activated. We recall that, as opposed

to alternative methods such as Refs. 24 and 25, rejection of

noise is achieved without learning or modeling noise fea-

tures, i.e., no dictionary is built from noise data. An input is

rejected by the classifier if the estimated SINR, obtained by

computing Eq. (7), is lower than some threshold. This

approach is very efficient to discriminate noise data from

calls of interest.23 There exists numerous ways of setting the

rejection threshold. For instance, it can be empirically cho-

sen by the user according to the context and based on his

own experience or it can rely on performance statistics.

For instance, we hereafter present a method that is based

on the estimation of a false-alarm probability as commonly

done in the Neyman�Pearson framework for binary hypoth-

esis testing. Assuming that the probability density function

(pdf) of the SINR metric is known when noise samples are

injected into the classifier, a rejection threshold guaranteeing

a user-specified false-alarm probability can then be found.

However, since the space of all possible underwater transient

noises is very large, it is hardly possible to know precisely

this pdf in practice. Therefore, we resort to an empirical

approach and inject into the classifier synthetic random noise

samples to obtain a pdf from which we can set a threshold.

This noise is synthetic so as to be as independent as possible

of a specific dataset. In our experiment, we generate inde-

pendent and identically distributed samples following the

standard Gaussian distribution. Any variance different from

0 could be used, as the SINR metric is scale invariant. The

synthetic noise is then obtained by filtering these samples in

time and frequency. The filters have bandwidths and dura-

tions identical to bandwidths and durations of mysticete calls

to be classified. As explained in Sec. III B, this corresponds

to a worst-case scenario for our method because such a noise

will yield a greater SINR than noise with any other band-

width and duration. In practice, actual detectors possibly

used ahead of the classifier are unlikely to trigger the classi-

fier with a false alarm signal whose bandwidth and duration

TABLE II. Confusion matrix of the SINR-SRC algorithm (in %) without

the rejection option. For each class, the upper line contains the mean and the

lower line the standard deviation obtained for 100 cross-validation trials on

the call library only.

Z-call Mad1 Mad2 20-Hz pulse D-call

Z-call 100 0.00 0.00 0.00 0.00

0.10 0.00 0.10 0.00 0.10

Mad1 0.00 97.7 1.90 0.00 0.40

0.00 1.10 1.10 0.00 0.50

Mad2 0.00 0.30 99.60 0.00 0.10

0.00 0.30 0.30 0.10 0.20

20-Hz pulse 0.00 0.00 0.00 100 0.00

0.00 0.00 0.00 0.00 0.00

D-call 0.00 0.00 0.00 0.00 100

0.00 0.10 0.10 0.00 0.10

TABLE III. Confusion matrix (in %) for the method derived from Ref. 29

without rejection option. For each class, the upper line contains the mean

and the lower line the standard deviation obtained for 100 cross-validation

trials on the call library only.

Z-call Mad1 Mad2 20-Hz Pulse D-call

Z-call 79.89 0.00 19.66 0.45 0.00

15.96 0.00 16.06 0.44 0.00

Mad1 0.25 96.77 2.70 0.00 0.29

0.66 1.44 1.22 0.00 0.33

Mad2 3.42 0.69 95.89 0.00 0.00

3.09 0.37 3.14 0.00 0.00

20-Hz Pulse 0.01 0.00 0.00 93.00 6.99

0.02 0.00 0.02 5.13 5.14

D-call 3.73 0.00 0.00 0.00 96.27

1.17 0.00 0.00 0.00 1.17

FIG. 7. (Color online) Distribution of SINR, as computed in Eq. (7), for

Gaussian samples (in blue), real noise (in red) and real calls from the test

dataset (in magenta), all identified as Z-calls according to the SRC algorithm

without the rejection option. For a 1% false-alarm probability, the rejection

threshold is set to �12.5 dB.
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exactly match those of an actual mysticete call. The consid-

eration of worst-case scenarios is justified by the will to mea-

sure achievable classification performance irrespective of

the detector. Rejection thresholds are estimated on each

SINR distribution obtained after injecting Gaussian samples

into each dictionary. Figure 7 shows an example of a rejec-

tion threshold chosen by setting a false-alarm probability at

1% on the SINR distribution obtained with filtered Gaussian

samples injected into the Z-call dictionary. Note that distri-

butions other than Gaussian may have been relevant to

model noise samples. However, Fig. 7 indicates that the

SINR distribution (in red) of real noises (not necessarily

Gaussian) obtained after SRC is close to the distribution

obtained with Gaussian input samples. Once again, the rejec-

tion threshold could be selected with alternative methods. It

is beyond the scope of the paper to thoroughly investigate

this point; we rather focus our attention on the general meth-

odology and the classifier structure.

Table IV shows the average confusion matrix of the

SINR-SRC algorithm with rejection. As expected, activating

the rejection option yields a slight drop in the average recall.

This drop is mostly significant for D-calls due to their high

variability in duration, frequency range and energy distribu-

tion which cause that certain calls in the test dataset are con-

sidered as transient noise and therefore rejected. However,

observe that 93.34% of noise inputs are correctly rejected.

This clearly shows that SINR-SRC is capable of efficiently

handling input data that are unknown to the classifier. This

property is highly desirable in the low-frequency underwater

environment where interfering sound sources can be very

active. The classification results of SINR-SRC with the rejec-

tion option deactivated are shown in Table V when noise

inputs only are injected into the classifier. It can be seen that

noise inputs are spread among the 5 classes with a slightly

higher probability for classes of calls embedding impulsive

structures with a large frequency slope. This is explained by

the large number of transient signals in the noise library.

For comparison, the classification results obtained with

the method derived from Ref. 29, with its rejection option,

are shown in Table VI. A test signal is rejected if the

Mahalanobis distance between its feature vector and its

assigned mean attribute vector exceeds 3. This rejection

option does not significantly reduce the recall. However, the

noise rejection proposed in Ref. 29 is not as effective as the

SINR-SRC rejection option. Actually, Tables IV and VI

show that 93.3% of noise samples are correctly rejected by

SINR-SRC, whereas only 66.4% are rejected by Ref. 29. For

a deeper analysis of the rejection performance for SINR-

SRC and Ref. 29, zooms on the receiver operating character-

istics (ROC) curves are shown in Figs. 8 and 9. Such a com-

parison is all the more relevant that the noise rejection is

controlled by both methods via one parameter only that we

made vary. For our implementation of Ref. 29, this parame-

ter is the threshold on the Mahalanobis distance between a

test signal feature vector and its assigned mean attribute. For

SINR-SRC, this parameter is the false alarm probability we

TABLE IV. Confusion matrix of the SINR-SRC algorithm (in %) with the

rejection option activated. The false alarm probability specified on the SINR

distributions after injection of filtered Gaussian noise samples into the dic-

tionaries is 1%. For each class, the upper line contains the mean and the

lower line the standard deviation obtained for 100 cross-validation trials on

the call and noise library.

Z-call Mad1 Mad2 20-Hz pulse D-call Rejected

Z-call 99.62 0.00 0.00 0.00 0.00 0.38

0.44 0.00 0.00 0.00 0.00 0.44

Mad1 0.00 96.92 0.52 0.00 0.00 2.56

0.00 1.27 0.56 0.00 0.00 1.07

Mad2 0.00 0.35 98.11 0.00 0.00 1.54

0.00 0.28 0.73 0.00 0.00 0.64

20-Hz Pulse 0.00 0.00 0.01 97.63 0.00 2.36

0.00 0.00 0.03 0.72 0.00 0.72

D-call 0.00 0.01 0.00 0.00 89.89 10.1

0.00 0.04 0.00 0.00 1.81 1.81

Noise 0.75 0.79 3.21 0.27 1.64 93.34

0.39 0.62 1.96 0.17 1.89 4.65

TABLE V. Classification results of SINR-SRC (in %) with noise inputs

only. The rejection option is deactivated. The upper line contains the mean

and the lower line the standard deviation obtained for 100 cross-validation

trials.

Z-call Mad1 Mad2 20-Hz pulse D-call

Noise 11.76 4.97 35.08 21.70 26.49

19.61 7.34 27.92 29.49 30.89

TABLE VI. Confusion matrix (in %) for the method derived from Ref. 29 with

the rejection option activated. The rejection threshold is 3 on the Mahalanobis

distance between feature vectors and assigned mean attributes. For each class,

the upper line contains the mean and the lower line the standard deviation

obtained for 100 cross-validation trials on the call and noise library.

Z-call Mad1 Mad2 20-Hz Pulse D-call Rejected

Z-call 75.64 0.00 0.01 0.00 0.00 24.35

14.91 0.00 0.06 0.00 0.00 14.91

Mad1 0.01 87.98 1.13 0.00 0.00 10.88

0.09 3.70 0.61 0.00 0.00 3.55

Mad2 1.93 0.43 90.60 0.00 0.00 7.04

1.87 0.32 3.88 0.00 0.00 3.26

20-Hz Pulse 0.01 0.00 0.00 85.08 0.00 14.92

0.02 0.00 0.00 5.30 0.00 5.30

D-call 3.73 0.00 0.00 0.00 88.26 8.01

1.17 0.00 0.00 0.00 2.51 2.32

Noise 4.94 0.00 21.60 0.00 7.05 66.41

5.13 0.00 16.68 0.00 5.21 24.62

FIG. 8. (Color online) ROC curve for each class of the method derived from

Ref. 29 with rejection option.
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can specify to all the SINR distributions obtained after injec-

tions of filtered Gaussian noise samples into the dictionaries.

Given a specified false alarm probability for SINR-SRC, or a

specified threshold on the Mahalanobis distance for our

implementation of Ref. 29, we calculated the actual false

alarm rates and recalls obtained by each method in presence

of real noise and calls. We remind the reader that filtered

noise samples have similar bandwidths and durations as

those of mysticete calls to be classified, which is the worst-

case scenario for both methods.

These ROC curves highlight the better ability of SINR-

SRC to reject noise compared to the reference method. In

particular, the offset in Fig. 8 indicates that filtered noise

tends to have average time-frequency attributes close to

learned attributes of calls, whatever the type of call. In the

worst-case scenario we have considered, the method derived

from Ref. 29 cannot provide a false alarm rate smaller than

5%. Note also the following facts. To begin with, the noise

rejection rate of 66.41% reported in the confusion matrix of

Table VI corresponds to a false alarm rate of 33.59%. The

reader can then verify that the recall values of Table VI can

be retrieved from the ROC curves of Fig. 8. In the same

way, given that a specified false alarm probability of 1% on

the SINR distributions yielded an actual false alarm rate of

6.66% for SINR-SRC (equivalently, a noise rejection rate of

93.34% for this method), the recall values displayed in Table

IV can be obtained from Fig. 9. The ROC curves of Fig. 9

also emphasize the relevance of setting a false alarm proba-

bility of 1%, leading to an actual false alarm rate of 6.66%.

This choice is seemingly a good trade-off between false

alarm rate and recall, even for D-calls. Indeed, beyond this

false alarm probability, increases in false alarm rates become

more important than gains in recalls.

So far, no reduction of the dictionary dimension has

been considered, i.e., D ¼ A. As mentioned in Sec. II B, lim-

iting the redundancy by solving Eq. (6) during the training

phase may be useful to reduce the computational complex-

ity. Figure 10 shows the impact of the dictionary size N0c on

the classification performance for each call class. For this

test, Eq. (6) was solved using online dictionary learning45

(the Matlab code is available at http://spams-devel.gforge.in-

ria.fr/). The dictionary size affects the recall and it is inter-

esting to note that its impact is class-dependent. For

stereotyped calls such as Z-calls, the size of the dictionary

can be small since the dimension of the signal space is

related to the call variability, which is low in this case.

FIG. 9. (Color online) ROC curve for

each class of SINR-SRC with rejection

option.

FIG. 10. (Color online) Average recall

as a function of the dictionary size N0c,

K¼ 3 and rejection option activated.
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However, for varying signals such as D-calls, which also

have overlapping features with 20 Hz-pulses, the classifica-

tion recall increases (on average) with the dictionary size. In

this experiment, choosing N0c ¼ 40 for each class is sufficient

to achieve close-to-optimal performance.

The impact of the dictionary size on the computational

complexity is visible in Fig. 11 where the run-time-to-signal-

duration ratio (RTSDR) of SINR-SRC is shown as a function

of the dictionary size N0c. This ratio is computed as the dura-

tion of the processing time divided by the total duration of the

test dataset (58 h). SINR-SRC is implemented in Matlab

(without parallel computing) and runs on a workstation with

the 2.9 GHz Intel Core i7 processor, 8 Gio of RAM memory

and a DDR3 internal hard drive. Most of the computation

time is spent in solving Eq. (4) by using OMP, which makes

the RTSDR increase with N0c. In this experiment, the process-

ing time increases linearly with N0c. Therefore, according to

Fig. 10, the processing time can be divided by 2.5 by choosing

N0c ¼ 40 instead of N0c ¼ 100 without any performance loss.

For N0c ¼ 40, SINR-SRC took less than 24 s to process the

58 h of tests signals, which meets the requirements of most

PAM applications. Note that this time is expected to increase

with the number of classes considered by the classifier.

As shown in Fig. 12, the sparsity constraint K can also

affect the classification recall. Similarly to the dictionary

size, the optimal value for K depends on the variability and

complexity of the test signals and is therefore class-

dependent. However, no fine tuning is required. SINR-SRC

performs better for all classes when K is greater than 1,

K¼ 1 corresponding to a bank of matched-filters. For a spar-

sity constraint greater than three and less than 10, this test

shows that SINR-SRC is robust to the choice of K. Since K
contributes to the complexity of our algorithm, it may be rel-

evant to limit it to three or four for the call classes tested in

this experiment. In addition, choosing a large value for K

(much greater than 10 for instance) may be detrimental to

the classification performance as the SINR metric will tend

to reject less noise samples (Ref. 23, Sec. 4.1.2).

IV. CONCLUSION

Sparse representations have shown to be efficient to clas-

sify low frequency mysticete calls. Such representations model

calls as linear combinations of atoms in an (overcomplete) dic-

tionary in which many of the coefficients are zero. In this

framework, the classifier seeks to approximate the input test

signals with (a few) linear combinations of previously learned

calls and assigns the class label that gives the best approxima-

tion. The proposed method directly processes the digitized time

series and therefore does not suffer any loss of information due

to a possible projection in another space (as can been done

when extracting features from spectrograms or cepstrums).

Since the classification is based on a measure of similarity, it

relies on a few parameters, namely, the dictionary size and the

sparsity constraint. These parameters reflect the degree of vari-

ability and complexity of a given call class. As shown in the

numerical experiments, these parameters are easy to set and do

not require a fine tuning.

Sparse representations also allow building simple confi-

dence metrics to reject noise data. The SINR statistic Eq. (7)

has been used at the output of the classifier and has rejected

93.3% of real noise data. With this approach, noise is han-

dled without making the algorithm learn the features of real

noise data. The overall method has been tested on five types

of mysticete calls with overlapping time-frequency features

FIG. 12. (Color online) Average recall

as a function of the sparsity constraint

K, N0c ¼ 100 and rejection option

activated.

FIG. 11. (Color online) Run-time-to-signal-duration ratio as a function of

the dictionary size N0c.
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and different degrees of variability. Numerical results have

shown that, on the test dataset, 96.4% are correctly classified

on average. As expected, stereotyped calls, such as Z-calls

of Antarctic blue whale are easier to classify than more

variable calls such as blue whale D calls, which can be incor-

rectly rejected by the SINR statistic.

Class labels can easily be removed or added to the pro-

posed method. This can be useful for operational passive

FIG. 13. (Color online) Example of Z-

call reconstruction with OMP. The

spectrogram representation and the

temporal signal of a test Z-call are dis-

played on the top left. The spectrogram

and time representations of the recon-

structed signal with K¼ 3 are given on

the top right. Below are the three

atoms and their combination that pro-

vided the Z-call reconstruction.

FIG. 14. (Color online) Example of D-

call reconstruction with OMP. The

spectrogram representation and the

temporal signal of a test D-call are dis-

played on the top left. The spectrogram

and time representations of the signal

reconstructed by OMP with K¼ 3 are

given on the top right. Below are the

three atoms and their combination that

provided the D-call reconstruction.
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acoustic monitoring where prior information such as location

of the sensor and/or time of the year can be taken into

account to focus on specific species.

In a recent work,23 sparse representations have shown good

performance for detecting mysticete calls. A possible extension

of this work would therefore be to merge both approaches to

jointly detect and classify mysticete sounds. Since calls are

affected by local propagation conditions and noise, further work

could also study the potential benefit of building dictionaries

from parametric model of calls rather than/as well as from the

call themselves. In addition, the SINR statistic could be used as

a confidence metric (related to the threshold position) and also

as a novelty detector. In this way, the SINR-SRC algorithm

would not only offer the capability of rejecting noise but it could

also be used to develop an automatic semi-supervised incremen-

tal learning algorithm able to build new dictionaries online.

After detection by the SINR-SRC algorithm of an unknown

structured signal, a human analyst could label it and decide to

add it to a new dictionary for automatic classification of future

occurrences of this new class of signals.

ACKNOWLEDGMENTS

This work was funded by Sercel. The authors would like to

thank Jean-Yves Royer of the University of Brest, CNRS

Laboratoire Domaines Oc�eaniques for providing the

DEFLOHYDRO and the OHASISBIO datasets, as well as Ana
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APPENDIX

Figures 13 and 14 show examples of Z and D-call recon-

struction using orthogonal matching pursuit (OMP),46 with

K¼ 3 atoms. These calls have been extracted from the

DEFLOHYDRO and the DCLDE 2015 datasets described in

Sec. III A.
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52A. Sirović, J. A. Hildebrand, S. M. Wiggins, and D. Thiele, “Blue and fin

whale acoustic presence around Antarctica during 2003 and 2004,” Mar.

Mamm. Sci. 25(1), 125–136 (2009).
53R. P. Dziak, J. Royer, J. H. Haxel, M. Delatre, and D. R. Bohnenstiehl,

H. Matsumoto, J. Goslin, C. Brachet, and T. Lau, “Hydroacoustic detec-

tion of recent seafloor volcanic activity in the southern Indian Ocean,” in

AGU Fall Meeting Abstracts, T13, San Francisco, CA (abstract), 2008,

pp. 1–1.
54E. Tsang-Hin-Sun, J.-Y. Royer, and J. Perrot, “Seismicity and active

accretion processes at the ultraslow-spreading southwest and intermediate-

spreading Southeast Indian ridges from hydroacoustic data,” Geophys. J.

Int. 206(2), 1232–1245 (2016).
55E. Leroy, F. Samaran, J. Bonnel, and J.-Y. Royer, “Identification of two

potential whale calls in the southern Indian Ocean, and their geographic

and seasonal occurrence,” J. Acoust. Soc. Am. 142(3), 1413–1427

(2017).
56S. Rankin, D. Ljungblad, C. Clark, and H. Kato, “Vocalisations of

Antarctic blue whales, Balaenoptera musculus intermedia, recorded dur-

ing the 2001/2002 and 2002/2003 iwc/sower circumpolar cruises, area v,

Antarctica,” J. Cetacean Res. Manage. 7, 13–20 (2005), available at http://

swfsc.noaa.gov/publications/CR/2005/2005Ran.pdf.
57“Sercel,” http://www.sercel.com/ (Last accessed 2017-03-27).

J. Acoust. Soc. Am. 144 (3), September 2018 Guilment et al. 1563

Copyright 2018 Acoustical Society of America. This article may be downloaded for personal use only. 
Any other use requires prior permission of the author and the Acoustical Society of America.

The following article appeared in The Journal of the Acoustical Society of America 144, 1550 (2018) 
and may be found at https://doi.org/10.1121/1.5055209

https://doi.org/10.1121/1.4824682
https://doi.org/10.1121/1.429434
https://doi.org/10.1121/1.429434
https://doi.org/10.1121/1.3257588
https://doi.org/10.1121/1.3257588
https://doi.org/10.1109/TPAMI.2008.79
https://doi.org/10.1109/TPAMI.2008.79
https://doi.org/10.1121/1.2257385
http://www.birds.cornell.edu/brp/
https://doi.org/10.1111/j.1748-7692.1996.tb00578.x
https://doi.org/10.1016/j.bspc.2015.05.007
https://doi.org/10.1016/j.bspc.2015.05.007
http://www.jmlr.org/papers/volume11/mairal10a/mairal10a.pdf
https://doi.org/10.1109/TSP.2006.881199
https://doi.org/10.1109/TSP.2006.881199
https://doi.org/10.1371/journal.pone.0071561
https://doi.org/10.1016/j.dsr.2004.05.007
https://doi.org/10.1016/j.dsr.2004.05.007
https://doi.org/10.1111/j.1748-7692.2008.00239.x
https://doi.org/10.1111/j.1748-7692.2008.00239.x
https://doi.org/10.1093/gji/ggw201
https://doi.org/10.1093/gji/ggw201
https://doi.org/10.1121/1.5001056
http://swfsc.noaa.gov/publications/CR/2005/2005Ran.pdf
http://swfsc.noaa.gov/publications/CR/2005/2005Ran.pdf
http://www.sercel.com/

	s1
	l
	n1
	s2
	s2A
	d1
	d2
	s2B
	d3
	d4
	d5
	s2C
	d6
	s2D
	d7
	s2E
	s3
	s3A
	s3A1
	s3A2
	f1
	f2
	f3
	s3A3
	s3B
	f4
	f5
	s3C
	s3C1
	f6
	t1
	s3C2
	t2
	t3
	f7
	t4
	t5
	t6
	f8
	f9
	f10
	s4
	f12
	f11
	f13
	f14
	app1
	c1
	c2
	c3
	c4
	c5
	c6
	c7
	c8
	c9
	c10
	c11
	c12
	c13
	c14
	c15
	c16
	c17
	c18
	c19
	c20
	c21
	c22
	c23
	c24
	c25
	c26
	c27
	c28
	c29
	c30
	c31
	c32
	c33
	c34
	c35
	c36
	c37
	c38
	c39
	c40
	c41
	c42
	c43
	c44
	c45
	c46
	c47
	c48
	c49
	c50
	c51
	c52
	c53
	c54
	c55
	c56
	c57



